## Product Description

The study of optoelectronics examines matter, light and their interactions. The solid state and quantum theory provide fundamental descriptions of matter. The solid state shows the effect of crystal structure and departure from crystal structure on electronic transport. Classical and quantum electrodynamics describe the foundations of light and the interaction with matter.

The text introduces laser engineering physics in sufficient depth to make accessible recent publications in theory, experiment and construction. A number of well-known texts review present trends in optoelectronics while many others develop the theory.

The Physics of Optoelectronics progresses from introductory material to that found in more advanced texts. Such a broad palette, however, requires the support of many sources as suggested by the reference sections after every chapter. The journal literature itself is dauntingly vast and best left to the individual texts for summary in any particular topical area. For this reason, the present text often overlaps many excellent references as a service to the reader to provide a self-contained account of the subject.

The Physics of Optoelectronics addresses the needs of students and professionals with a ”standard” undergraduate background in engineering and physics. First- and second-year graduate students in science and engineering will most benefit, especially those planning further research and development. The textbook includes sufficient material for introducing undergraduates to semiconductor emitters and has been used for courses taught at Rutgers and Syracuse Universities over a period of six years. The students come from a variety of departments, but primarily from electrical and computer engineering. A subsequent course in optical systems and optoelectronic devices would be the most natural follow-up to the material presented herein.

The Physics of Optoelectronics focuses on the properties of optical fields and their interaction with matter. The laser, light emitting diode (LED) and photodetector perhaps represent the best examples of the interaction. For this reason, the book begins with an introduction to lasers and LEDs, and progresses to the rate equations as the fundamental description of the emission and detection processes. The rate equations exhibit the matter–light interaction through the gain terms. The remainder of the text develops the quantum mechanical expressions for gain and the optical fields. The text includes many of the derivation steps, and supplies figures to illustrate concepts in order to provide the reader with sufficient material for self-study.

The text summarizes and reviews the mathematical foundations of the quantum theory embodied in the Hilbert space. The mathematical foundations focus on the abstract form of the linear algebra for vectors and operators. These foundations supply the ”pictures” often lacking in elementary studies of the quantum theory, that would otherwise make the subject more intuitive. A figure does not always accurately represent the mathematics but does help convey the meaning or ”way of thinking” about a concept.

The quantum theory of particles and fields can be linked to the Lagrangian and Hamiltonian formulations of classical mechanics. A derivation of the field–matter interaction from first principles requires the electromagnetic field Lagrangian and Hamiltonian. A chapter on dynamics includes a brief summary and review of the formalism for discrete sets of particles and continuous media. The remainder of the discourse on dynamics covers topical areas in the quantum theory necessary for the study of optical fields, transitions and semiconductor gain. The chapter includes the density operator, time-dependent perturbation theory, and the harmonic oscillator from the operator point-of-view.